Nanoclusters of GPI-Anchored Proteins Are Formed by Cortical Actin-Driven Activity

نویسندگان

  • Debanjan Goswami
  • Kripa Gowrishankar
  • Sameera Bilgrami
  • Subhasri Ghosh
  • Riya Raghupathy
  • Rahul Chadda
  • Ram Vishwakarma
  • Madan Rao
  • Satyajit Mayor
چکیده

Several cell-surface lipid-tethered proteins exhibit a concentration-independent, cholesterol-sensitive organization of nanoscale clusters and monomers. To understand the mechanism of formation of these clusters, we investigate the spatial distribution and steady-state dynamics of fluorescently tagged GPI-anchored protein nanoclusters using high-spatial and temporal resolution FRET microscopy. These studies reveal a nonrandom spatial distribution of nanoclusters, concentrated in optically resolvable domains. Monitoring the dynamics of recovery of fluorescence intensity and anisotropy, we find that nanoclusters are immobile, and the dynamics of interconversion between nanoclusters and monomers, over a range of temperatures, is spatially heterogeneous and non-Arrhenius, with a sharp crossover coinciding with a reduction in the activity of cortical actin. Cholesterol depletion perturbs cortical actin and the spatial scale and interconversion dynamics of nanoclusters. Direct perturbations of cortical actin activity also affect the construction, dynamics, and spatial organization of nanoclusters. These results suggest a unique mechanism of complexation of cell-surface molecules regulated by cortical actin activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin.

Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24-3...

متن کامل

Active Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface Molecules

Many lipid-tethered proteins and glycolipids exist as monomers and nanoclusters on the surface of living cells. The spatial distribution and dynamics of formation and breakup of nanoclusters does not reflect thermal and chemical equilibrium and is controlled by active remodeling of the underlying cortical actin. We propose a model for nanoclustering based on active hydrodynamics, wherein cell s...

متن کامل

Transbilayer Lipid Interactions Mediate Nanoclustering of Lipid-Anchored Proteins

Understanding how functional lipid domains in live cell membranes are generated has posed a challenge. Here, we show that transbilayer interactions are necessary for the generation of cholesterol-dependent nanoclusters of GPI-anchored proteins mediated by membrane-adjacent dynamic actin filaments. We find that long saturated acyl-chains are required for forming GPI-anchor nanoclusters. Simultan...

متن کامل

Endocytosis of GPI-anchored proteins in human lymphocytes: role of glycolipid-based domains, actin cytoskeleton, and protein kinases

GPI-anchored surface proteins mediate many important functions, including transport, signal transduction, adhesion, and protection against complement. They cluster into glycolipid-based membrane domains and caveolae, plasmalemmal vesicles involved in the transcytosis and endocytosis of these surface proteins. However, in lymphocytes, neither the characteristic flask shaped caveolae nor caveolin...

متن کامل

Signal transduction via glycosyl phosphatidylinositol-anchored proteins in T cells is inhibited by lowering cellular cholesterol.

Glycosylphosphatidylinositol (GPI)-anchored proteins can deliver costimulatory signals to lymphocytes, but the exact pathway of signal transduction involved is not yet characterized. GPI-anchored proteins are fixed to the cell surface solely by a phospholipid moiety and are clustered in distinct membrane domains that are formed by an unique lipid composition requiring cholesterol. To elucidate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2008